
• /.'tJ "" "" / /

t

NASA RESEARCH GRANT

AUTOMATED KNOWLEDGE GENERATION

FIRST YEAR FINAL REPORT

NAGI0-0042

(_5_-C[_-161_ 17) I, fjT£EA'_I_C _£_IEDGE
£i. bEE_A'liCN riral SeFoxt, 1st _EaL

(U_iversity o! _tra] Flc[i6_) 1"7 p
CSCL C_D

N89- i 1_0

Unclaa

G31o3 01626C9

UNIVERSITY OF CENTRAL FLORIDA

COMPUTER ENGINEERING DEPARTMENT

DR. HARLEY R. MYLER

DR. AVELINO J. GONZALEZ

SEPTEMBER 28, 1988

Davis earlier this week by Dr. Avelino Gonzalez.

I am also submitting under separate cover one bound and one unbound

copy to NASA Scientific and Technical Information Facility as required
by the contract.

If Mr. Davis or you have any questions or need additional information, please

call Dr. Gonzalez at (407) 275-2236 or me.

Sincerely,

Betsy L. Gray

Contract Coordinator

BLG/hc

cc: Mr. Tom Davis/PT-TPO
NASA STIF

STATE UNIVERSITY SYSTEM OF FLORIDA AN EQUAL OPPORTUNITY/AFFIRMATIVE ACTION EMPLOYER

NASA FINAL REPORT

1.0 PROGRAM OBJECTIVES

The general objectives of the NASA/UCF Automated

Knowledge Generation Project have been the development of an

intelligent software system that could access CAD design

data bases, interpret them, and generate a diagnostic

knowledge base in the form of a system model. The initial

area of concentration is in diagn_s_is Ofprocess control

system using the Knowledge-based Autonomous Test Engineer

(KATE) diagnostic system. A secondary objective has been

the study of the general problems of automated knowledge
generation.

There exist considerable obstacles in accomplishing

these objectives. Dr. S. J. Thomas discusses some of these,
as he developed a system to carry out some of these tasks

during his summer fellowship at KSC in 1987.

The biggest problem found by the UCF team, as well as

Dr. Thomas, has been that a typical CAD data base does not

contain all the information necessary to generate a complete

knowledge base as required by KATE. In his final report to

NASA titled "Automated Construction of a Knowledge Base from

Computer Aided Design Data, '_ Thomas put forth estimates of

the potential capability of an automated process to generate
a knowledge base in its complete form. These estimates are
shown in Table I.

The investigation undertaken by UCF, nevertheless, has

as its ultimate goal the development of a system which will

be able to generate a complete knowledge base from a CAD

data base, even though the latter does not contain all the

information necessary to accomplish the former.

At the present time, in order to develop a knowl_dge

base for use by KATE, a process engineer is re_ired to

review drawings of the system. Such a person would

recognize the symbols as certain components, and based on

his knowledge and experience, would be able to determine the

function of such a component, even though is not explictly

spelled out in the drawing.

Therefore, in order to create an automated knowledge

generator, it is important that it possess the knowledge to

enable it to provide the information not found on the CAD

data base. It i
the AKG s expecte
KATE _^_ automatica1_ d that such

....vw_edge fram_ i_ y _enerate a feature, w _ .
_ ""_ _quzres, w_early all tho ?_id _l_ow

__ A Secon_-- *La minimum _ _ _ot3 whi_
_eneric _ _= _r-y-goa I _= _. **uman int^-* _*

minlmal cha_fa t differen_ _ _An_ PrOject was _- ==zace.
aCces__ _es. It _.... _u sYStem- - _ _u make

_ Capables= "'_ also d_-, "t° could b_ _ AKG
cy automat4 =_zrable to ---_ accessed w_

minimize human interaction. -, unce again, {_y to

The Speclfi
Project on ,._ - c ObJec__

prOtotype k$_ &cn this do _ves of the =_
_ased 0 cUment x_rst e

WOuld accompll n ObJect_^__ is base _ y ar of th__aent_ . dt was t _ _ --_
h Omas in h 4 sh the equlv-_ _ xangua_ ,_ ueVeloo a
at Wou_A _ _ work T_ aient fu-^_ ST _=_av _., -_r
__ _ me d _ _" ne advan_:_ .,_tZOna!it o_o; Which
PrOgram w.... o_,_ zn a w=- _ oz _, Y achl_vo_
Without _a allow fo __ so that th- _xs Prototv_ =_ my

out i- _x_em re-d_f ease of ex.._Y Structure _ry. xs that
"" une Sec_-_ _oxgn. Th4^ _nSlOn _. = _ tile

_u and third Ye_r_Xpanslon w_u_nc_tionality

• _e carried
This dOCument descrlbfirst year, th

It Will =__ e goals ___ es the w _ _

_o addreoo _c°mpliShed _%_.per:ormed , _
_ _ne Plans __ =-u the ob_-- during th_

2.0 AUT -_ SUbsequent_td?les faced

UZ_ATED KNOWLEDG- x_rs . •

The AKG s = GENERATION
generato_ YStem i8 _ , (AKG) 8_m_..
sYSte_ _. sYStem. _ ueslgned _ _ _

This A_abase andU_a n take in _ me a Versati _
__ __on d_ _uduc Put from _ le fram
" Philos_-_--_c_Des in _^_a. frameb a I_,ter r e _
used i_ _ _Y behi-_ "'-_.ual] __ 9 sed knowl_faph CAD

"" _cS de _- .,u SOme o_2c._ AKG s,.=_- =uge has.
here are v=_°Pment and T.2_ e technl_22 _m design ii_

expert SOme Problems faced and
",Plem-_ - . :'=_ an_ __ -,,u

" _'_ation. -_ _Sumpti_

sYStems developments, recommendations for future
Also discusse_

2.1 AKG DESIGN PHILOsoPHy

The

taken in Object Oriented Pro
developed_ne develo m _ grammln
COmponent o_ a Svmb_ nt of the _g (OOp) ann

The Flavors Oh' _ase is r__r "_ne, whe_ _ng
Symbollcs _ Sect Orie-_
AKG machines a_ed Pro r _z_Sented ._-_ eac_
._ , each ok__ are us_ - g ammln, =_ _ _ an Object.Which __ ._Ject is _-- =u to Pro _ _aClllt

"" uonslst _ _ _presen_ duce t_e,_ _, les of th_
slots _ _everal in_f_ u as a ,,c___[_ umSects V_

could be dlvlused -o_nc e y",ponen_o =. • _
to genera_ _ ded into _ varlables {s_ _avor,,,

Which are u_ une final -$"u. groups: _ • _uus). These

fOllwlng -_ xor the l,_su It (fram_,_' Slots Which are

slots are in "'_rnal Operatio _ Slot). 2_heSlOt s
NOmenclature group i: ns of AKG.
A_O

AIO
APO
AEO
PARTS
TOLERANCE
SOURCE
CVALUE
SOURCE-PATH
IN-PATH-OF
SINKS
KINDS
INSTANCES
UNITS
IMAGES
DELAY
RANGE

The description of the aboqe slots could be found in KATE's
related paper. Group 2 slots are defined below:

N@%_4E •
This slot holds the name of a component, this

information is used for the graphical presentation
of a component.

DESCRIPTION: This is the description of a component in

the CAD database. This could replace the content

of the NOMENCLATURE slot in the frame.

FROMCONNPTS: This slot identifies all the upstream

components for this component, it also holds the

information concernlng-the connecting points

between this component and its upstream components.

TOCONNPTS: This slot identifies all the downstream

components for this component, it also holds the

information concerning the connecting points

between this component aDd_its downstream

components.

XPOS: This slot holds the X-axis location of a component

in the graphical presentation of the investigated
system.

YPOS: This slot holds the Y-axis location of a component

in the graphical presentaion of the investigated
system.

WINDOW: This slots holds the information regarding the

window in which the graphical presentation is

displayed.

PRESENTATION: This slot holds the information regarding
the presentation type of a component. Presentation

type is a Symbolics facility used by AKG to present
a component as a graphical presentation.

BOX: This slot also is part of the Symbolics facilities

which is used to present a component as a graphical
presentation.

i

For more detailes on the PRESENTATION, -BOX, and WINDOW
refer to Symbolics manuals 7A, and 7B.

Besides the OOP approach, AKG system utilizes

modularity techniques. As the system grows in functionality
and sophistication, its modular construction allows the

system developer to change part of the system without

affecting other parts. In addition, the approach facilitates

the incremental development of the system. AKG is currently
divided into seven modules:

1

2

3

4

5

6
7

ACCESS

SPAWN

CONSTRAINT GENERATOR

BUILDER

RESOLVER

COMPONENT & PROCESS DATABASE

USER INTERFACE

All the modules with the exception of the RESOLVER are

either completed or in the process of development. The

following sections describe each module in the AKG system _and
their current status.

ACCESS

The purpose of this module is to enable AKG (or AKG

users) to access remote computers in which the CAD database

resides. This module makes available all the necessary

facilities for the user to access any remote computer by
two simple commands (actually two mouse clicks). This is

accomplished through special access files written for each

remote computer. These files produce the login, password, and

all other necessary information (control signals) which are

required to access a remote computer. Currently AKG is able

to connect to the Computer Engineering Departments's GOULD or

VAX computers. ACCESS is in the initial stages of the

development, Ultimately, in addition to being able to connect

to any computer at any site, ACCESS will be able to

automatically transfer files to and from these remote

compute r s.

SPAWN

The purpose of this module'i_ to identify all the

components in a system, and generate an object (instantiate

a component flavor) for each of these components in the AKG

system. This is done by the SPAWN module manipulating a CAD

file called compu.dat. Here it is assumed that it is an easy

task to write a inquiry program on any CAD system to generate
a compu.dat file. SPAWN has been completed.

CONSTRAINT GENERATOR (CG)
i

The objective of this module is to find the

interconnectivity of each object in the system. In order to

find this connectivity, the CG module manipulates the

contents of a formatted CAD file called tofrom.dat. In this

module each object in the tofrom.dat file will receive a

connectivltymessage. The content of this message is the

identity of the upstream and downstream objects for the

object receiving the message. In addition to the above

information, the connectivity message includes information

about the connecting points on each object. Here again it is

assumed that it is possible to generate a file like

tofrom.dat in any CAD system. CONSTRAINT GENERATOR is in
the final stage of its development.

BUILDER

The Builder routine manipulates the flavor--components

from the Make-frame module (discussed in latter sections) to

setup frames that would be more acceptable to the-diagnostic

system. Presently, Builder produces frames that are specific
to KATE standards as all the frames begin with a function,

KATE uses called "deframe" and all follow certain syntax

constraints (parentheses placements) that are apparent in

KATE's frames. The completed frames are written to an output
file called "kate-frames-file.lisp".

While producing these frames, Builder also makes changes
in their in-path-of and source-path slots to allow for a more

sound representation conducive to diagnostic needs. In doing

so, two global variables are set up -- *measurement-list* and

command-list -- which are lists of objects considered to be

measurements or commands respectively. The attainment of

these lists rely solely on checking the AIO slots of the

components for an indication of either command or

measurement. This method is only temporary since these slots

are added to the component database directly from the Purge

demo data. The specific method that will eventually be used

is not yet designed but various methods are being discussed

and are current topics in the role of the Resolver module.

An assumption was made that the CAD data of the Purge

demo was typical of CAD generated files which indicated that

command and measurement devices are connected as starting

points in control paths, i.e. their source-path slots are nil

and their in-path-of slots are connected to components. Using

this assumption, it was noted that such a setup is

unacceptable for interface with a diagnostic system.

Therefore, in order to follow KATE's convention that commands

are in the source-path of components ("upstream") and

measurements are in the in-path-of slots of components

("downstream"), the following procedure is implemented:

i. Switch the source-path and in-path-of slots of the
measurement frames.

2. Using *measurement-list* to access the measurement

frames and check their source-path slots, set up an

association list containing the measurements and the

components they affect.

3. Traversing the list, add the associated measurement to

the in-path-of slots of the components it affects and

delete the measurement out of the components' source-

path slots.

Note that the commands are already set up properly and do not
need to be changed.

RESOLVER

The objective of this module is to accept any

inconsistent information for an object from any module in the

AKG, and try to resolve these inconsistencies. This action is

performed using relaxation labeling, which will be discussed

in more detail in following sections. It is the belief of the

research team that RESOLVER will be the most complicated

module in the AKG system. This module is still in the

conceptual design stage, and no code has been written for it.

USER INTERFACE

The objective of this module is to allow non-AI

oriented personnel to operat AKG. It will generate a

graphical presentation of the investigated system for the

user. In addition to graphical presentation of the system,

AKG's USER INTERFACE, allows the user to perform any
operation (any AKG's operation) with one or two mouse

clicks. Since each object in the graphic presentation is

mouse sensitive, the user can click left on any object in the

drawing to get the characteristics (properties) of that
object. The following commands are mouse sensitive in the

USER INTERFACE:

i. Access: A right or left mouse click on this command

will actuate the Access module. As a result of the above

operation another mouse sensitive menu is offered to the

user. The options in this menu are i. Access to VAX, 2.

Access to GOULD, or 3. Exit Access. A right or left mouse

click on choice 1 or 2, will result in a connection to the

VAX, or GOULD computer respectively in the UCF Engineering
building. As it was discussed previously the user is not

required to know the login or password for either computers.

It is obvious that the third option is for exiting the access
module.

2. Builder: A right or left mouse click on builder will

instantiate the Builder module. Builder will collect all the

information for each object in the system and generate

Knowledge base frames (these frames will be in the KATE

format). Each frame will be saved in a file called Kate-

frames-file, which is located under the sys:akg;system-output
directory on the symbolics machine. Currently, Builder

manipulates the in-path-of and source-path slots of each

object in order to generate frames which are closer to the
KATE format.

3. Clean Display: A right or left click on this option
will clean up all the AKG's windows.

4. Constraint Generator: A right or left click on

this option instantiates the constraint generator module. As

it was discussed previously, as a result of this option, all

the objects in the system will find their connectivities with

respect to the other objects in the system.

5. Draw KB: A right or left click on this option will

draw the connectivities between each object in the system.

This module will examine each flavor in the system and based

on the present status of the flavor, it will generate a

graphical representation of it. Therefore in order to have a

correct presentation of the system, it is critical to

perform this function after the Constraint Generator, Make
Frame, and Builder operations. As it was discussed

previously, each object in this _d_wing is mouse sensitive,
and the left mouse click on an object will display its
characteristics.

6. Make Frame: As a result of left or right click on

this command, each object will attempt to define the rest of

its characteristics. Some of this information is located in

the CAD files (i.e. Unit, Range, etc.), and some of them are

located in the Component, and Process Database. Once all this

information is collected Make Frame operation is complete.

Ultimately, Make Frame will have the ability to identify all

the objects which have missing critical information (critical

informa?ion will be defined later), and mark these objects
as incomplete for further processing.

7. Readme: By clicking on this command, another mouse

sensitive menu will pop up. This menu gives a range of

readme files for each of the commands in the user interface.

TABLE 1. COMPARISON OF RESULTS.

Slots

aio

aeo

nomencl.

source-path

in-path-of

source

tolerance

delay

status

units

range

sinks

THOMAS' RESULTS

Filled
Auto.

52/52

NA

0/52

8/52

52/52

2/2

NA

0/3

0/52

23/23

16116

2/2

Percent

100%

NA

0%

15%

100%

100%

NA

0%

0%

Est, of

Pot. Cap.

100%

NA

100%

50%

> 90%

> 80%

NA

0%

50%

100%

100%

100%

100%

100%

> 80%

Filled
Auto.

26/26"

14/14"

13/13*

25125#

35/35

NA

2/2*

3/3'

6/6"

23/23

15/15

NA

AKG'S RESULTS

Percent

100%

100%

100%

100%

100%

NA

100%

100%

100%

100%

100%

NA

Est. of

Pot. Cap

100%

> 75%

100%

> 90%

100%

100%

75%

75%

75%

100%

100%

100%

NOTES:

*: Filled with the help of the

#: Need special operators to

component database

get this result

of slots generated, the progress made in its connectivity and
other areas has been substantial.

Some of KATE's knowledge representation conventions that

AKG uses are generally confined to the type of slots needed

in a single "frame" or device representation and to the

information that each slot requires for the proper operation

of a diagnostic system. Other conventions that are specific

to KATE are reproduced by the Builder module and does not

affect the outcome of other modules. Thus changing standards

or conventions specific to KATE can easily be reflected in
this module.

One of the significant features of a diagnostic tool

such as KATE is that it is generic in nature. Providing a

knowledge base for a generic diagnostic tool requires the

knowledge base to be complete within itself (defining all

objects and instances of those objects) and not be function

dependent -- meaning it should not lend itself to

establishing its own instantiations in the Lisp environment

with the aid of functions. The version of KATE presently in
use with the AKG project does not support function

independency. KATE uses functions for various categories of

device frames such as the function "analog-read" which is

contained directly in the analog device frames section of the

knowledge base. The method that was used to provide a

transferable knowledge base necessary for testing is first

for AKG to generate KATE-like frames and then to later

manually include KATE-specific details. This approach

preserves the generic goal and will be used until newer

versions of KATE can be evaluated or until some sort of
industry standard is created.

To date, the knowledge base generated by AKG contains

frames that cover the full Purge demo circuit, excluding

pseudo-pressures, and are complete in their connectivity.

Pseudo-pressures are measurement frames that the Purge demo

uses to buffer the flow between the compressors with valves

circuit and the digital logic with valve circuit. They do not

behave like measurement devices, however, and seem to serve

no purpose other than securing points of reference for the

user. A proper CAD connection between these two sub-circuits
could have achieved the same results using actual measurement

devices. In the abscence of useful measurement areas in the

CAD data, a structured pseudo-measurement frame properly

implemented could be helpful. If i_ were possible for AKG to
identify points of interest within a circuit to enhance

readability and accessibility, then a general frame could

easily be set up to provide a possible location for

measurement or other reference while still keeping the
connectivity of the circuit intact.

The connectivity of a circuit in AKG's terms depends on

the integrity of the source-path and in-path-of slots. These

slots reflect good connectivity coming from AKG's Constraint-
generator, but do not reflect the correct control flow at
this point. By determining the control components, i.e.
measurements and commands, and completing the function set-
measurements contained in Builder, near perfect slots can be
generated. The limitations of these slots being syntax in the
case of KATE and conventionalism in the case of other
diagnosers. The convention being that commands are placed
"upstream" (ref. Cornell) and measurements are placed
"downstream" of affecting components. Though, this convention
is a logical one.

The knowledge base that KATE currently uses can be

divided basically-into two parts. The first part being the

actual system components along with their control mechanisms

or commands and measurements (from now on the term objects

will be used to refer collectively to commands, measurements

and compcnents). This can be called the low level knowledge.

The other part is a sort of behind-the-scenes part that can

be called the high level knowledge. It consists of more

general objects or descriptions of objects that are usually

"ancestors" of the low level objects. It is required in the
function of KATE because it provides needed information

about the character of an object. Here the generic nature of

KATE wanes again because along with functions in the

knowledge base, there are calls to specific components in the

high level knowledge base from functions in the body of KATE

which would mean that if a low level knowledge base

substitution were done, the high level knowledge base would

need to be edited for unfamiliar circuits. And if a total

knowledge base substitution were done, the high level

knowledge would need to be constrained to KATE's specific
details.

This high level knowledge, however, may not be

absolutely necessary in future generic diagnosers because

much of the information a diagnoser needs is provided within

individual frames. It is essential, however, for a high level

knowledge base, which would include a very great deal of

information on all types of circuits and devices, to be

developed in AKG to allow for the full operation of pending
modules and the complete unaided generation of all frame

slots including tolerances and delays as well as the high
level knowledge for a particular circuit if needed.

The basics of the low level knowledge base is in part

presently accomplished as far as circuit completeness is

concerned. With the assumption that the command and

measurement devices are known, AKG is able to produce frames

with good connectivity and near perfect in-path-of and

source-path slots. The development of the high level

knowledge base and the complete generic frame are topics

constantly discussed and a lot of good ideas have surfaced

and are soon ready to be focused into a single solid
objective.

4.0 Fourth Quarter Accomplishments

The project team has succeeded in completing the AKG

prototype system as described in earlier reports. To

sunmLarize, the Automated Knowledge Generation system is

constructed from individual modules written in Common Lisp
and running on Symbolics Lisp engines. It consists of six

major modules, which perform the following functions:

Access --- queries the CAD data source producing
the component and to-from lists.

Spawn -- creates an AKG Object for each component.

Constraint Generator -- orchestrates the

labeling process of the components by
propagating confidences.

Builder -- constructs a diagnostic frame for

the target reasoninq system from each

resolved component, in this version of AKG it
is KATE.

Resolver -- attempts resolution of components

whose confidence fails to reach a global

threshold. Performs primary access to the
Component and Process databases.

Graphic User Interface -- allows human

supervision of the AKG process.

We have been successful in performing an automated conversion

of the Purge Demo system as described by a CAD database using

the AKG prototype. Development of the process has revealed a

number of unanticipated factors that directly impact the AKG

process. These factors are specific to KATE and are all

related to an overall lack of generic_ty. These factors are
outlined here:

a) KATE uses non-generic functions within its

knowledge base _KB) that require special

hzndling. This means that AKG will need to be

handling. This means that AKG _wil] need to be
less generic and more "KATE-like".

Our solution is to remove these specifics

from KATE and make KATE examine objects
individually to determine interface

requirements. This may require KATE to be run

in a parallel environment to operate in real-
time.

b) In addition to functions appearing in the KB,

there are calls to specific components within

the high level knowledge base from functions

within the body of KATE's inferencing

mechanism. When AKG creates a KB, it has no

ability to modify KATE to account for these

changes. Thi_ implies that KATE must be made
more generic.

c) The status slots seem to be reliant on KATE-

specific functions for boolean expressions.

These must be removed and replaced with

system generic functions that will pertain to
a diagnostic requirement standard.

We will be focusing on solutions to these problems and will

be working towards a generic diagnostic standard.

5.0 Second Year Goals

We must now focus our research on refining the AKG to operate

on a "real" system, the Orbiter Maintenance and refurbishment

Facility, or OMRF. The team has succeeded in producing CAD

drawings of the OMRF and is working on getting a database

constructed for it. ANSI standards have been procured that
describe how drawings must be done. Descriptions of

components following the ANSI standards will be added to the

component database. Because of the complexity of system

energy flow in the OMRF, it will provide a fertile foundation
for the development of the process database.

The team has anticipated the need for parallel processing of
both AKG and that of frame-based diagnostic systems. AKG

requires parallelism due to the enormous expected size of the

component and process databases that must be searched and the

propagation of relaxation confidence measures across the

component structure network. If KATE is redesigned to be

fully generic, then KATE will have to examine each component
transfer function separately in order to evaluate a

malfunction. With existing implementations, this will not be

possible to do in real-time. Our solution to both of these
problems is to acquire a large Serial Instruction stream,
Multiple Data stream, or SIMD, machine. At this writing, a
SIMD architecture would seem to be ideal given the structure
of a process system as a network of interconnected
components. Our candidate computer for further research and
development of both AKG and real-time frame-based diagnosers
is the Connection Machine TM (CM) built by Thinking Machines,

Inc. of Cambridge, Massachusetts. The team has recently

received a *lisp simulator for the machine (*lisp is a

parallel lisp that uses the parallel processing features of

the CM) and we will be examining the feasibility of
implementing AKG in parallel with it.

Our intermediate goals (for the second year, first quarter)
are :

a) Finish CAD _atabase for OMRF, develop component
and to-from lists consistent with AKG
requirements.

b) Add CAD graphics using ANSI standards to the
Graphic User Interface.

6.0

c) Evaluate Connection Machine implementation of

AKG using the simulator, and if warranted,

prepare a proposal for acquisition of
hardware.

Acknowledgements:

The Authors would like to recognize Messers. Massood

Towhidnejad and Frederic McKenzie for assisting in the

preparation of this document, and welcome Ms. Robin Kladke as
the newest member of the research team.

(deframe COMPRESSOR-I

(nomenclature "Pnuematic Compressor #I")
(aio compressor)

(source a-t-e-6-25M)

(status (cond ((< a-t-e-6-25m .5)
o.o)
((< a-t-e-6-25m 1.9)

(+ (* a-t-e-6-25m 3.93) -1.96))
((< a-t-e-6-25m 4)

(+ (* a-t-e-6-25m 8.81) -11.24))
((< a-t-e-6-25m 6.001)

(+ (* a-t-e-6-25m 6.66) -2.67))))
f (in-path-of output-pressurel)

• (delay 660)

(units "psig")) "

(deframe A-T-E-36-8M
(nomenclature "Power supply #2")

(aio analog-power-supply)

(source-path da-out-b)

(status (* da-out-b 3.6))
(sinks compressor-2)

(in-path-of analog-in-l)

(units "volts"))

(deframe K1
(aio relay)

(nomenclature "Shut-off Valve Controll Relay")

(source-path devicel)

(in-path-of v27200-54))

(deframe DEVICE3

(aio not-gate)

(nomenclature "Shut-off Valve Primary Select Gate")
(source-path (not ttl-out-l))
(in-path-of device2))

(deframe TTL-OUT- 1

(aio ttl-output)

(aeo TTL-OUT-CARD1)

(address i)

(in-path-of)
(cvalue off))

(f-replace 'ttl-out-0 'in-path-of 'device2)

(f-replace 'ttl-out-i 'in-path-of 'device3)
(fput 'ttlTout-1 'in-path-of 'device4)

(f-replace 'ttl-out-2 'in-path-of 'device4)

Figure I. Human generated frames.

OF POOR QUAL._TY

(deframe COMPRESSOR#1

(nomenclature "Pnuematic Compressor #i")
(aio COMPRESSOR)

(source-path (ATE6-25M))

(status _COND ((< (CSTATUS'ATE6-25M) 0.5} 0.0)

((< (CSTATUS ATE6-25M) 1.9) (+ (* (CSTATUS ATE6-25M) 3.93) -1.96))
((< (CSTATUS ATE6-25M) 4) (+ (* (CSTATUS ATE6-25M) 8.81) -11.24))

((< (CSTATUS ATE6-25M) 6.001) (+ (* (CSTATUS ATE6-25M) 6.66) -2.67)))(in-path-of (MV-74))
(delay 660)

(range 0-40_
(uni£s "PSI))

(deframe ATE36-SM

ngmenclature "Power supply #2")
aloANALOG-POWER-SUPPLy]

(source-path (DA-OUT-B))

(Itatus _m (STATVAL 'DA-OUT-B) 3.6))
(in-path-of (ANALOG-IN-1 COMPRESSOR#2))(range 0-36)
(units "VDC"))

(deframe K1

(nomenclature "Shut-off valve controll relay")(aio RELAY)

(source-path (DEVICE-I PWR-2))
(in-path-of qV27200-54 PWR-IR)))

(deframe DEVICE-3

(nomenclature "Shut-off valve primary select, (aio NOT-GATE)

(source-path (PWR-IR TTL'ouT-I))
(in-path-of (PWR-1 DEVICE-2)))

(deframe TTL-OUT-I

(aio TTL-OUTPUT)
(aeo TTL-OUT-CARDI)
(source T)
(cvalue OFF)

(in-path-of (DEVICE-3 DEVICE-4)))

gate")

Figure 2. AKG generated frames.

_un TTL-INPUT (&rest frames &aux changed-list)
at* ((addr-string (car frames))

(bit-list (bi-read addr-string)) ;initial read
(time (timer)))

(dolist (measurement-frame (cdr frames))

(let ((current-value (unboolify (nth (car (mgetl measurement-frame

'address))
bit-list)))

(frame-value(car (mgetl measurement-frame 'cvalue)))) •
(when (not (equal current-value frame-value))

(push (llst measurement-frame current-value time) changed-list))));;_hanged-list)) •

"_n ANALOG-INPUT (&rest frames &aux changed-list)
4t_ ((addr-string (car frames)))

_dolist (measurement-frame (cdr frames))
(let* ((current-value (analog-read

addr-string

(car (mgetl measurement-frame 'address))))(time (timer))

(frame-value (car (mgetl measurement-frame 'cvalue))))

(Unless (<. (_ frame-value 0.03) current-value (+ frame-value 0.03))
;;hard-coded accuract of 0.06 volts dc II!
(push (llst measurement-frame

_hanged-list) (rounder current-value 2) time) changed-list)))))

;read the latest value

I

n ANALOG-READ (addr-string channel &aux (string ,,,,))_wrt (format nil "'aRS,,

addr-string)) ; RESET SEQUENCE STACK command

•_rt (format nil "'aSl,'a,, ; SEQUENCE command, uses format #i

addr-string channel)) ; (see k-lnit-lsp/setup-measurements)_rrt (format nil "'aTFI',
; TRIGGER command,

addr-string)) _ 1 meas cycle with max sample time

_rrt (format nil "'aAAI" ; ACCEPT command, gets the card ready
addr-string)) ; for 1 measurement in ascii format:s:%sysint #x60 i 0 6 0)

i:imes (byte 6) ;IBRD function (6 bytes=l meas'mt)

:_ultiple-value-bind (byte word n-word)
(sys:%contents *l-data-seg-p, byte)

(setf string (string-append string (format nil "'c" byte)))))
_d-from-string string)) ;so it'll return a number

Figure 3. Functions in the human generated _owledge base

0

